Multilingual language models such as mBERT have seen impressive cross-lingual transfer to a variety of languages, but many languages remain excluded from these models. In this paper, we analyse the effect of pre-training with monolingual data for a low-resource language that is not included in mBERT -- Maltese -- with a range of pre-training set ups. We conduct evaluations with the newly pre-trained models on three morphosyntactic tasks -- dependency parsing, part-of-speech tagging, and named-entity recognition -- and one semantic classification task -- sentiment analysis. We also present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance. Our results show that using a mixture of pre-training domains is often superior to using Wikipedia text only. We also find that a fraction of this corpus is enough to make significant leaps in performance over Wikipedia-trained models. We pre-train and compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu). The models achieve state-of-the-art performance on these tasks, despite the new corpus being considerably smaller than typically used corpora for high-resourced languages. On average, BERTu outperforms or performs competitively with mBERTu, and the largest gains are observed for higher-level tasks.
翻译:诸如MBERT等多种语言模式的跨语种转移给多种语言,令人印象深刻,但许多语言仍被排除在这些模式之外。在本文件中,我们分析了培训前使用单语数据对低资源语言进行培训的影响,而MBERT -- -- 马耳他 -- -- 不包括在MBERT -- -- 马耳他 -- -- 和一系列培训前设置了各种培训前培训模式的影响。我们还发现,在三种形态化任务 -- -- 依赖分析、部分语音标签和命名实体识别 -- -- 和一种语义分类任务 -- -- 情绪分析。我们还为马耳他提供了一个新创建的文体,并确定了培训前数据大小和域对下游业绩的影响。我们的结果显示,使用培训前领域组合往往优于仅使用维基百科文本。我们还发现,这一材料的一小部分足以在三种形态化任务 -- -- 依赖维基百科培训的模式的绩效上取得显著的飞跃。我们在新形式上和比较了两种模式:一种单一语言的BERT模型,从头训练过,以及另一种经过进一步培训的多语种语言水平的多语种、在标准上完成这些业绩任务,通常都是在高水平上完成。