Independent component analysis (ICA) is an unsupervised learning method popular in functional magnetic resonance imaging (fMRI). Group ICA has been used to search for biomarkers in neurological disorders including autism spectrum disorder and dementia. However, current methods use a principal component analysis (PCA) step that may remove low-variance features. Linear non-Gaussian component analysis (LNGCA) enables simultaneous dimension reduction and feature estimation including low-variance features in single-subject fMRI. We present a group LNGCA model to extract group components shared by more than one subject and subject-specific components. To determine the total number of components in each subject, we propose a parametric resampling test that samples spatially correlated Gaussian noise to match the spatial dependence observed in data. In simulations, our estimated group components achieve higher accuracy compared to group ICA. We apply our method to a resting-state fMRI study on autism spectrum disorder in 342 children (252 typically developing, 90 with autism), where the group signals include resting-state networks. We find examples of group components that appear to exhibit different levels of temporal engagement in autism versus typically developing children, as revealed using group LNGCA. This novel approach to matrix decomposition is a promising direction for feature detection in neuroimaging.


翻译:独立部件分析(ICA)是功能性磁共振成像中流行的一种不受监督的学习方法,在功能性磁共振成像中是一种不受监督的学习方法。在神经系统紊乱(包括自闭症谱谱系障碍和痴呆症)中,ICA小组被用来寻找生物标志,然而,目前的方法采用的主要部件分析(PCA)步骤可以消除低差异特征。线性非Gausian部分分析(LNGCA)能够同时减少尺寸和地貌估计,包括单子磁共振成成成成成成成成像法中的低差异特征。我们提出了一个LNGCCA模型,以提取由不止一个主题和特定主题组成部分共享的组群组成部分。为了确定每个主题中各组成部分的总数,我们建议进行一个测量性重标测试,在空间上对高斯噪音进行比对数据中观察到的空间依赖度进行取样。在模拟中,我们估计的集团组成部分的精确度比ICAA组组得到更高的精确度。我们的方法用于对342名儿童(典型的252个发育成型,90个有自闭式)的自闭式信号,其中的群信号包括休息网络。我们发现一组组成部分的样本中显示典型的神经特征特征的特征的特征的特征定位的特征定位,以显示的基质质质学学的基质的基质定位,以显示的基质的基质的基质的基质的基质的基质定位的基质定位的基质定位,以显示儿童。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月8日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员