Nowadays, Deep Neural Networks (DNNs) report state-of-the-art results in many machine learning areas, including intrusion detection. Nevertheless, recent studies in computer vision have shown that DNNs can be vulnerable to adversarial attacks that are capable of deceiving them into misclassification by injecting specially crafted data. In security-critical areas, such attacks can cause serious damage; therefore, in this paper, we examine the effect of adversarial attacks on deep learning-based intrusion detection. In addition, we investigate the effectiveness of adversarial training as a defense against such attacks. Experimental results show that with sufficient distortion, adversarial examples are able to mislead the detector and that the use of adversarial training can improve the robustness of intrusion detection.


翻译:目前,深神经网络(DNNS)报告许多机器学习领域的最新成果,包括入侵探测,然而,最近对计算机视觉的研究显示,DNNS可能容易受到对抗性攻击的伤害,这种攻击有可能通过输入专门制作的数据而使其被误解为错误的分类。在安全关键地区,这种攻击可能造成严重的损害;因此,在本文件中,我们研究了对抗性攻击对深学习入侵探测的影响。此外,我们调查了对抗性训练作为抵御这种攻击的防御手段的有效性。实验结果表明,如果有足够的扭曲,对抗性例子能够误导探测器,使用对抗性训练可以提高入侵探测的稳健性。

0
下载
关闭预览

相关内容

专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
3+阅读 · 2018年6月5日
VIP会员
相关VIP内容
专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员