An electroencephalogram is an effective approach that provides a bidirectional pathway between the user and computer in a non-invasive way. In this study, we adopted the visual imagery data for controlling the BCI-based robotic arm. Visual imagery increases the power of the alpha frequency range of the visual cortex over time as the user performs the task. We proposed a deep learning architecture to decode the visual imagery data using only two channels and also we investigated the combination of two EEG channels that has significant classification performance. When using the proposed method, the highest classification performance using two channels in the offline experiment was 0.661. Also, the highest success rate in the online experiment using two channels (AF3-Oz) was 0.78. Our results provide the possibility of controlling the BCI-based robotic arm using visual imagery data.
翻译:电子脑图谱是一种有效的方法,它以非侵入方式为用户和计算机提供双向路径。在本研究中,我们采用了视觉图像数据来控制BCI的机器人臂。视觉图像随着时间的推移增加了视觉皮层的阿尔法频率范围的力量。我们提出了一个深层次的学习结构,用两个渠道解码视觉图像数据,我们只使用两个渠道,我们还调查了两个具有显著分类性能的EEG频道的结合情况。在使用拟议方法时,离线实验中两个频道的最高分类性能是0.661。此外,使用两个频道(AF3-Oz)进行在线实验的最高成功率是0.78。我们的结果提供了利用视觉图像数据控制BCI的机器人臂的可能性。