Ultrasound tongue imaging is used to visualise the intra-oral articulators during speech production. It is utilised in a range of applications, including speech and language therapy and phonetics research. Ultrasound and speech audio are recorded simultaneously, and in order to correctly use this data, the two modalities should be correctly synchronised. Synchronisation is achieved using specialised hardware at recording time, but this approach can fail in practice resulting in data of limited usability. In this paper, we address the problem of automatically synchronising ultrasound and audio after data collection. We first investigate the tolerance of expert ultrasound users to synchronisation errors in order to find the thresholds for error detection. We use these thresholds to define accuracy scoring boundaries for evaluating our system. We then describe our approach for automatic synchronisation, which is driven by a self-supervised neural network, exploiting the correlation between the two signals to synchronise them. We train our model on data from multiple domains with different speaker characteristics, different equipment, and different recording environments, and achieve an accuracy >92.4% on held-out in-domain data. Finally, we introduce a novel resource, the Cleft dataset, which we gathered with a new clinical subgroup and for which hardware synchronisation proved unreliable. We apply our model to this out-of-domain data, and evaluate its performance subjectively with expert users. Results show that users prefer our model's output over the original hardware output 79.3% of the time. Our results demonstrate the strength of our approach and its ability to generalise to data from new domains.


翻译:超声波舌成像用于在语音制作过程中直观地显示室内动脉。 它用于一系列应用, 包括语音和语言疗法以及语音研究。 超声波和语音音频同时记录, 为了正确使用这些数据, 两种模式应该正确同步。 在记录时使用专用硬件实现同步, 但这个方法在实际操作上可能失败, 导致数据使用率有限 。 在本文中, 我们处理在数据收集后自动同步超声波和音频的问题 。 我们首先调查专家超声波用户对同步错误的容忍度, 以便找到检测错误的门槛 。 我们使用这些阈值来界定对系统进行评估的准确度评分界限 。 我们然后描述我们自动同步的方法, 由自我监督的神经网络驱动, 利用两个信号之间的关联来同步数据 。 我们用不同演讲方特性、 不同设备、 不同记录环境的模型, 并实现超时速数据的精确度 >92.4 % 。 我们用这个硬度的模型来显示我们的硬度数据, 我们用新的硬度分组来显示我们的硬度数据 。 最后, 我们用新的硬度数据来显示我们的硬度数据, 我们用新的硬度 以新的硬度来显示我们的硬度数据, 我们用新的硬度 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Dance2Music: Automatic Dance-driven Music Generation
Arxiv
0+阅读 · 2021年7月20日
Arxiv
0+阅读 · 2021年7月18日
Advances in Online Audio-Visual Meeting Transcription
Arxiv
4+阅读 · 2019年12月10日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员