Convolutional neural networks (CNN) have demonstrated their ability to segment 2D cardiac ultrasound images. However, despite recent successes according to which the intra-observer variability on end-diastole and end-systole images has been reached, CNNs still struggle to leverage temporal information to provide accurate and temporally consistent segmentation maps across the whole cycle. Such consistency is required to accurately describe the cardiac function, a necessary step in diagnosing many cardiovascular diseases. In this paper, we propose a framework to learn the 2D+time long-axis cardiac shape such that the segmented sequences can benefit from temporal and anatomical consistency constraints. Our method is a post-processing that takes as input segmented echocardiographic sequences produced by any state-of-the-art method and processes it in two steps to (i) identify spatio-temporal inconsistencies according to the overall dynamics of the cardiac sequence and (ii) correct the inconsistencies. The identification and correction of cardiac inconsistencies relies on a constrained autoencoder trained to learn a physiologically interpretable embedding of cardiac shapes, where we can both detect and fix anomalies. We tested our framework on 98 full-cycle sequences from the CAMUS dataset, which will be rendered public alongside this paper. Our temporal regularization method not only improves the accuracy of the segmentation across the whole sequences, but also enforces temporal and anatomical consistency.


翻译:然而,尽管最近取得了成功,在最终阴极和最终精神失常图像上实现了观测器内部变异性,但CNN仍然在努力利用时间信息在整个周期内提供准确和时间上一致的分解图。这种一致性对于准确描述心脏功能是必要的,这是诊断许多心血管疾病的必要步骤。在本文件中,我们提出了一个框架,以学习2D+时间长轴心脏形状,使分解序列能够受益于时间和解剖一致性限制。我们的方法是一种后处理,以任何最新方法生成的分解回声心动序列作为输入,并在两个步骤中进行处理,以便(一) 根据心脏序列的总体动态,确定心血管-时序不一致,(二)纠正不一致。心脏不一致的识别和纠正取决于一个受限制的自闭式自动coder,以学习可生理上可解释的心脏形状嵌入过程,我们也可以在98年左右的纸质序列中检测和修正我们的数据。我们只能在这个周期内测试整个C-周期性序列中改进我们的数据。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年7月30日
专知会员服务
31+阅读 · 2021年6月12日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
(OpenCV/Keras)用手势控制的计算器
机器学习研究会
3+阅读 · 2018年3月4日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年4月13日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年7月30日
专知会员服务
31+阅读 · 2021年6月12日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
Top
微信扫码咨询专知VIP会员