Viscous contact problems describe the time evolution of fluid flows in contact with a surface from which they can detach. These problems are of particular importance in glaciology, where they arise in the study of grounding lines and subglacial cavities. In this work, we propose a novel numerical method for solving viscous contact problems based on a mixed formulation with Lagrange multipliers of a variational inequality involving the Stokes equation. The advection equation for evolving the geometry of the domain occupied by the fluid is then solved via a specially-built upwinding scheme, leading to a robust and accurate algorithm for viscous contact problems. We then use this numerical scheme to reconstruct friction laws for glacial sliding with cavitation. We also study the effects of unsteady water pressures on sliding with cavitation.
翻译:粘结接触问题描述与它们能够分离的表面接触的流体流的时间演变过程。 这些问题在冰川学中特别重要, 因为在地基线和亚冰川洞穴的研究中出现这些问题。 在这项工作中, 我们提出一种新的数字方法, 解决粘结接触问题, 其依据是与调控方程变异性变异性拉格朗格乘数的混合配方。 流体所占据域的几何演进的平方程式, 然后通过一个特别建造的上风方案加以解决, 从而导致对粘结接触问题进行稳健和准确的算法。 然后我们用这个数字法来重建冰川滑动的摩擦法。 我们还研究不固定的水压力对滑动的蒸发式的影响 。