In this paper we introduce a numerical method for nonlinear parabolic PDEs that combines operator splitting with deep learning. It divides the PDE approximation problem into a sequence of separate learning problems. Since the computational graph for each of the subproblems is comparatively small, the approach can handle extremely high-dimensional PDEs. We test the method on different examples from physics, stochastic control and mathematical finance. In all cases, it yields very good results in up to 10,000 dimensions with short run times.
翻译:在本文中,我们引入了非线性抛物线 PDE 的数值方法,该方法将操作员与深层学习相结合。它将PDE近似问题分为一系列不同的学习问题。由于每个子问题的计算图相对小,该方法可以处理极高的多维 PDE 。我们用物理、随机控制和数学融资等不同例子测试该方法。 在所有情况下,该方法在10,000维的短期内产生非常好的结果。