We consider the EBT algorithm (a particle method) for the non-local equation with a discontinuous interaction kernel. The main difficulty lies in the low regularity of the kernel which is not Lipschitz continuous, thus preventing the application of standard arguments. Therefore, we use the radial symmetry of the problem instead and transform it using spherical coordinates. The resulting equation has a Lipschitz kernel with only one singularity at zero. We introduce a new weighted flat norm and prove that the particle method converges in this norm. We also comment on the two-dimensional case which requires the application of the theory of measure spaces on general metric spaces and present numerical simulations confirming the theoretical results. In a companion paper, we apply the Bayesian method to fit parameters to this model and study its theoretical properties.
翻译:我们考虑的是非局部方程式的 EBT 算法( 粒子法), 使用不连续的交互内核。 主要困难在于内核的常规性较低, 而不是Lipschitz 连续, 从而阻止了标准参数的应用 。 因此, 我们使用问题的弧对称法, 并使用球座标来转换它 。 结果的方程式有一个 Lipschitz 内核, 只有一个单数, 零 。 我们引入了新的加权定型规范, 并证明粒子法在此规范中相融合 。 我们还评论了需要将测量空间理论应用于一般计量空间的二维案例, 以及当前数字模拟来证实理论结果 。 在一份配套文件中, 我们应用拜斯语法来调整参数, 并研究其理论特性 。