The visualization and detection of anomalies (outliers) are of crucial importance to many fields, particularly cybersecurity. Several approaches have been proposed in these fields, yet to the best of our knowledge, none of them has fulfilled both objectives, simultaneously or cooperatively, in one coherent framework. The visualization methods of these approaches were introduced for explaining the output of a detection algorithm, not for data exploration that facilitates a standalone visual detection. This is our point of departure: UN-AVOIDS, an unsupervised and nonparametric approach for both visualization (a human process) and detection (an algorithmic process) of outliers, that assigns invariant anomalous scores (normalized to $[0,1]$), rather than hard binary-decision. The main aspect of novelty of UN-AVOIDS is that it transforms data into a new space, which is introduced in this paper as neighborhood cumulative density function (NCDF), in which both visualization and detection are carried out. In this space, outliers are remarkably visually distinguishable, and therefore the anomaly scores assigned by the detection algorithm achieved a high area under the ROC curve (AUC). We assessed UN-AVOIDS on both simulated and two recently published cybersecurity datasets, and compared it to three of the most successful anomaly detection methods: LOF, IF, and FABOD. In terms of AUC, UN-AVOIDS was almost an overall winner. The article concludes by providing a preview of new theoretical and practical avenues for UN-AVOIDS. Among them is designing a visualization aided anomaly detection (VAAD), a type of software that aids analysts by providing UN-AVOIDS' detection algorithm (running in a back engine), NCDF visualization space (rendered to plots), along with other conventional methods of visualization in the original feature space, all of which are linked in one interactive environment.


翻译:视觉化和探测异常(异常)对于许多领域,特别是网络安全至关重要。在这些领域,提出了几种办法,但据我们所知,这些办法都没有同时或合作在一个连贯的框架内实现这两个目标。采用这些办法的视觉化方法是为了解释探测算法的输出,而不是为了便于独立视觉检测的数据探索。这是我们的出发点:UN-AVOIDS,一种未经监督和非参数化的方法,既包括直观化(人类过程),也包括检测(算法过程),这些方法都是在实际的视觉化(人类过程)和检测(算法过程),在实际的视觉变异性分析分数中,没有同时或合作地在一个连贯的框架内实现这两个目标。UN-AVOIDS的新颖之处是将数据转换成一个新的空间,这是作为周围的累积密度功能(NCDFDF),在这个空间中,直观化和检测(直观化),因此,在检测算出一个高的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直直径直径直径直径直地,在OA(OA),在OS 3OA UN-内,由OFOFIFA UNVS AS AS

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员