Topic modeling is a useful tool for analyzing large corpora of written documents, particularly academic papers. Despite a wide variety of proposed topic modeling techniques, these techniques do not perform well when applied to medical texts. This can be due to the low number of documents available for some topics in the healthcare domain. In this paper, we propose ProtoTopic, a prototypical network-based topic model used for topic generation for a set of medical paper abstracts. Prototypical networks are efficient, explainable models that make predictions by computing distances between input datapoints and a set of prototype representations, making them particularly effective in low-data or few-shot learning scenarios. With ProtoTopic, we demonstrate improved topic coherence and diversity compared to two topic modeling baselines used in the literature, demonstrating the ability of our model to generate medically relevant topics even with limited data.


翻译:主题建模是分析大规模文本语料库(尤其是学术论文)的有用工具。尽管已提出多种主题建模技术,但这些技术应用于医学文本时效果不佳。这可能源于医疗领域某些主题的可用文档数量较少。本文提出ProtoTopic,一种基于原型网络的主题模型,用于生成医学论文摘要的主题。原型网络是高效且可解释的模型,通过计算输入数据点与一组原型表示之间的距离进行预测,使其在低数据或少样本学习场景中尤为有效。通过ProtoTopic,我们展示了相较于文献中两种主题建模基线方法更高的主题连贯性与多样性,证明了本模型即使在有限数据下也能生成医学相关主题的能力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员