In this paper, we present a meta-algorithm intended to accelerate many existing path optimization algorithms. The central idea of our work is to strategically break up a waypoint path into consecutive groupings called "pods," then optimize over various pods concurrently using parallel processing. Each pod is assigned a color, either blue or red, and the path is divided in such a way that adjacent pods of the same color have an appropriate buffer of the opposite color between them, reducing the risk of interference between concurrent computations. We present a path splitting algorithm to create blue and red pod groupings and detail steps for a meta-algorithm that optimizes over these pods in parallel. We assessed how our method works on a testbed of simulated path optimization scenarios using various optimization tasks and characterize how it scales with additional threads. We also compared our meta-algorithm on these tasks to other parallelization schemes. Our results show that our method more effectively utilizes concurrency compared to the alternatives, both in terms of speed and optimization quality.
翻译:在本文中, 我们展示了一个元算法, 目的是加速许多现有的路径优化算法。 我们工作的中心思想是从战略上将一条路径分解成连续的组合, 称为“ pods ”, 然后在平行处理的同时优化到不同的舱舱。 每个舱配有一种颜色, 不管是蓝色还是红色, 并且路径的分割方式可以让相邻的同样颜色的舱配有对异颜色的适当缓冲, 减少同时计算之间的干扰风险 。 我们展示了一条路径分割算法, 以创建蓝色和红色舱组, 并详细说明一个平行优化这些舱的元算法步骤 。 我们评估了我们的方法是如何在模拟路径优化情景的试验台上工作, 使用各种优化任务, 并用额外的线来测量它的规模 。 我们还比较了这些任务上的元算法与其他平行计划 。 我们的结果显示, 我们的方法在速度和优化质量方面, 都更有效地使用与替代品相比的同值。