We present GrooveMeter, a novel system that automatically detects vocal and motion reactions to music via earable sensing and supports music engagement-aware applications. To this end, we use smart earbuds as sensing devices, which are already widely used for music listening, and devise reaction detection techniques by leveraging an inertial measurement unit (IMU) and a microphone on earbuds. To explore reactions in daily music-listening situations, we collect the first kind of dataset, MusicReactionSet, containing 926-minute-long IMU and audio data with 30 participants. With the dataset, we discover a set of unique challenges in detecting music listening reactions accurately and robustly using audio and motion sensing. We devise sophisticated processing pipelines to make reaction detection accurate and efficient. We present a comprehensive evaluation to examine the performance of reaction detection and system cost. It shows that GrooveMeter achieves the macro F1 scores of 0.89 for vocal reaction and 0.81 for motion reaction with leave-one-subject-out cross-validation. More importantly, GrooveMeter shows higher accuracy and robustness compared to alternative methods. We also show that our filtering approach reduces 50% or more of the energy overhead. Finally, we demonstrate the potential use cases through a case study.


翻译:我们提出了GrooveMeter,一种通过耳穿式传感器自动检测音乐中声音和运动反应,并支持音乐参与感知应用的新系统。为此,我们使用智能耳塞作为感测设备,其已广泛用于音乐听音,利用耳塞上的惯性测量单元 (IMU) 和麦克风而设计出反应检测技术。为了探索日常音乐听觉情境中的反应,我们收集了第一种数据集MusicReactionSet,其中包含30名参与者926分钟的IMU和音频数据。通过数据集,我们发现了使用音频和运动感测准确、稳健检测音乐听觉反应的一系列独特挑战。我们设计了先进的处理流程,使反应检测变得准确且高效。我们进行了全面评估,以检查反应检测和系统成本的表现。评估表明,通过留一子试验交叉验证,GrooveMeter的宏F1分数分别为0.89和0.81,分别用于声音反应和运动反应检测。更重要的是,GrooveMeter相对于替代方法具有更高的准确性和稳健性。我们还展示我们的过滤方法可以减少50%或更多的能源开销。最后,我们通过一个案例研究展示了潜在的使用案例。

0
下载
关闭预览

相关内容

音乐,广义而言,指精心组织声音,并将其排布在时间和空间上的艺术类型。
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月24日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员