Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution. Recently proposed HS pansharpening methods have obtained remarkable results using deep convolutional networks (ConvNets), which typically consist of three steps: (1) up-sampling the LR-HSI, (2) predicting the residual image via a ConvNet, and (3) obtaining the final fused HSI by adding the outputs from first and second steps. Recent methods have leveraged Deep Image Prior (DIP) to up-sample the LR-HSI due to its excellent ability to preserve both spatial and spectral information, without learning from large data sets. However, we observed that the quality of up-sampled HSIs can be further improved by introducing an additional spatial-domain constraint to the conventional spectral-domain energy function. We define our spatial-domain constraint as the $L_1$ distance between the predicted PAN image and the actual PAN image. To estimate the PAN image of the up-sampled HSI, we also propose a learnable spectral response function (SRF). Moreover, we noticed that the residual image between the up-sampled HSI and the reference HSI mainly consists of edge information and very fine structures. In order to accurately estimate fine information, we propose a novel over-complete network, called HyperKite, which focuses on learning high-level features by constraining the receptive from increasing in the deep layers. We perform experiments on three HSI datasets to demonstrate the superiority of our DIP-HyperKite over the state-of-the-art pansharpening methods. The deployment codes, pre-trained models, and final fusion outputs of our DIP-HyperKite and the methods used for the comparisons will be publicly made available at https://github.com/wgcban/DIP-HyperKite.git.


翻译:高超光谱泛光栅的目的是将低分辨率超光谱图像(LR-HSI)与已登记的全色图像(PAN)合成,以产生高光谱和空间分辨率增强的HSI。最近提出的HS全光栅方法已经利用深相动网络(ConvNets)取得了显著成果,这些网络通常由三个步骤组成:(1) 通过ConvNet对LR-HISI进行取样,(2) 通过ConvNet对残余图像进行预测,(3) 通过添加第一和第二步骤的输出来获得最后的连结 HSI。最近的方法利用了Deep图像(DIP)来更新LIS,因为它能够保存空间和光谱信息,而没有从大数据集中学习。然而,我们观察到,通过对常规光谱-多光谱网络功能引入额外的空间-多光电功能,我们可以通过我们预测的PANPA图像和实际的PAN参考码之间的距离来定义我们的空间-Oral-ial-ial-rial report。

0
下载
关闭预览

相关内容

逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
阿里巴巴ET城市大脑
智能交通技术
6+阅读 · 2018年12月23日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
16+阅读 · 2017年11月9日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
5+阅读 · 2018年1月17日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
阿里巴巴ET城市大脑
智能交通技术
6+阅读 · 2018年12月23日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
16+阅读 · 2017年11月9日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员