How would a static scene react to a local poke? What are the effects on other parts of an object if you could locally push it? There will be distinctive movement, despite evident variations caused by the stochastic nature of our world. These outcomes are governed by the characteristic kinematics of objects that dictate their overall motion caused by a local interaction. Conversely, the movement of an object provides crucial information about its underlying distinctive kinematics and the interdependencies between its parts. This two-way relation motivates learning a bijective mapping between object kinematics and plausible future image sequences. Therefore, we propose iPOKE -- invertible Prediction of Object Kinematics -- that, conditioned on an initial frame and a local poke, allows to sample object kinematics and establishes a one-to-one correspondence to the corresponding plausible videos, thereby providing a controlled stochastic video synthesis. In contrast to previous works, we do not generate arbitrary realistic videos, but provide efficient control of movements, while still capturing the stochastic nature of our environment and the diversity of plausible outcomes it entails. Moreover, our approach can transfer kinematics onto novel object instances and is not confined to particular object classes. Our project page is available at https://bit.ly/3dJN4Lf.


翻译:静态的场景会如何对本地波纹发生反应?如果您可以本地推动,静态场景会如何对本地波纹反应?如果您可以本地推动一个对象的其他部分会有什么影响? 将会有显著的移动, 尽管由于我们世界的随机性而存在明显的变化。 这些结果受由本地互动决定其总体运动的物体特征运动的动态调节。 相反, 一个对象的移动会提供有关其内在独特运动特征及其各部分之间相互依存关系的重要信息。 这种双向关系会鼓励学习物体运动运动与未来貌似图像序列之间的双向映射。 因此, 我们提议iPOKE -- -- 对象神经学的不可忽略的预测 -- -- 以初始框架和局部波纹为条件,允许对物体运动进行抽样,并将一对一对一对一的对应对应对应对应对应的视频。 与以前的工作不同, 我们并不产生任意的、现实的视频,而是对运动的高效控制, 同时仍然捕捉到我们环境的随机性性质和可信结果的多样性。 此外,我们的方法可以向相关的新版本/ 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年1月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
7+阅读 · 2019年4月8日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年1月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员