Stencil composition uses the idea of function composition, wherein two stencils with arbitrary orders of derivative are composed to obtain a stencil with a derivative order equal to sum of the orders of the composing stencils. In this paper, we show how stencil composition can be applied to form finite difference stencils in order to numerically solve partial differential equations (PDEs). We present various properties of stencil composition and investigate the relationship between the order of accuracy of the composed stencil and that of the composing stencils. We also present numerical experiments wherein we verify the order of accuracy by convergence tests. To demonstrate an application to PDEs, a boundary value problem involving the two-dimensional biharmonic equation is numerically solved using stencil composition and the order of accuracy is verified by performing a convergence test.
翻译:Stencils 构成使用了函数构成的概念, 由两个含有任意衍生物指令的元件组成, 以获得一个带有衍生物序列的元件, 其衍生物顺序等于组成物 Stencils 的顺序的总和。 在本文中, 我们展示了如何将斯tencils 构成用于形成有限差异 stencils 以便从数字上解决部分差异方程式( PDEs ) 。 我们展示了Stencils 构成物的特性, 并调查组成物的精确度与合成物 stencils 的精确度之间的关系。 我们还展示了数字实验, 我们通过聚合测试来验证精确度的顺序。 要演示对 PDEs 的应用, 涉及二维双声方方程的边界值问题是用Stencils 组成的数字解算的, 而精确度则通过进行合并测试来验证。