Detection Transformer (DETR) relies on One-to-One assignment, i.e., assigning one ground-truth object to only one positive object query, for end-to-end object detection and lacks the capability of exploiting multiple positive object queries. We present a novel DETR training approach, named {\em Group DETR}, to support Group-wise One-to-Many assignment. We make simple modifications during training: (i) adopt $K$ groups of object queries; (ii) conduct decoder self-attention on each group of object queries with the same parameters; (iii) perform One-to-One label assignment for each group, leading to $K$ positive object queries for each ground-truth object. In inference, we only use one group of object queries, making no modifications to DETR architecture and processes. We validate the effectiveness of the proposed approach on DETR variants, including Conditional DETR, DAB-DETR, DN-DETR, and DINO. Code will be available.
翻译:探测变异器(DETR)依赖于一对一的任务,即只将一个地面真实对象指定给一个正面对象查询,用于终端对终端物体的探测,缺乏利用多个正面对象查询的能力。我们介绍了一个新的DETR培训方法,名为 em Group DETR},用于支持集团一对一的任务。我们在培训期间简单修改:(一) 采用一对一的物体查询组;(二) 对每组具有相同参数的物体查询组进行解码自控;(三) 每个组进行一对一的标签分配,导致每个地面真实对象的正面对象查询费用为1K美元。据推测,我们只使用一组物体查询,不对DETR结构和进程作任何修改。我们确认拟议的关于DETR变异物的方法的有效性,包括有条件的DETR、DAB-DETR、DN-DETR、DN-DETR和DINO 代码。