The principle of minimum potential and complementary energy are the most important variational principles in solid mechanics. The deep energy method (DEM), which has received much attention, is based on the principle of minimum potential energy and lacks the important form of minimum complementary energy. Thus, we propose the deep energy method based on the principle of minimum complementary energy (DCM). The output function of DCM is the stress function that naturally satisfies the equilibrium equation. We extend the proposed DCM algorithm (DCM-P), adding the terms that naturally satisfy the biharmonic equation in the Airy stress function. We combine operator learning with physical equations and propose a deep complementary energy operator method (DCM-O), including branch net, trunk net, basis net, and particular net. DCM-O first combines existing high-fidelity numerical results to train DCM-O through data. Then the complementary energy is used to train the branch net and trunk net in DCM-O. To analyze DCM performance, we present the numerical result of the most common stress functions, the Prandtl and Airy stress function. The proposed method DCM is used to model the representative mechanical problems with the different types of boundary conditions. We compare DCM with the existing PINNs and DEM algorithms. The result shows the advantage of the proposed DCM is suitable for dealing with problems of dominated displacement boundary conditions, which is reflected in theory and our numerical experiments. DCM-P and DCM-O improve the accuracy of DCM and the speed of calculation convergence. DCM is an essential supplementary energy form of the deep energy method. We believe that operator learning based on the energy method can balance data and physical equations well, giving computational mechanics broad research prospects.


翻译:最低潜力和补充能源原则是固体机械中最重要的变异原则。深重能源方法(DEM)已经得到广泛关注,其基础是最低潜在能源原则,缺乏最起码补充能源的重要形式。因此,我们提出基于最低补充能源原则(DCM)的深重能源方法。DCM的输出功能是自然满足平衡方程式的压力功能。我们扩展了拟议的DCM算法(DCM-P),增加了自然满足空气压力功能中双调方程式的术语。我们把操作者学习与物理方程式相结合,并提出了深度补充能源操作者方法(DCM-O),包括分支网、中继网、基础网和具体网络。DCM-O首先将现有的高超度计算数字结果结合起来,通过数据对DCM-O进行培训。随后,将补充能量功能用于培训DCM的分支网和干网。我们介绍了最常见的压力功能、普兰德和Airy应功能的数值结果。拟议的DCM方法用于模拟具有代表性的DCM 和DM的计算方法,而DCM的典型的计算方法则反映了DMM的计算结果。我们认为,DCM的模型和DM的模型的正确分析了现有的计算结果,DM的计算方法可以反映了DMMMMM的模型和数字的模型的模型的计算结果。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月22日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员