This paper demonstrates a power analysis-based Side-Channel Analysis (SCA) attack on the SNOW-V encryption algorithm, which is a 5G mobile communication security standard candidate. Implemented on an STM32 microcontroller, power traces captured with a ChipWhisperer board were analyzed, with Test Vector Leakage Assessment (TVLA) confirming exploitable leakage. Profiling attacks using Linear Discriminant Analysis (LDA) and Fully Connected Neural Networks (FCN) achieved efficient key recovery, with FCN achieving > 5X lower minimum traces to disclosure (MTD) compared to the state-of-the-art Correlational Power Analysis (CPA) assisted with LDA. The results highlight the vulnerability of SNOW-V to machine learning-based SCA and the need for robust countermeasures.


翻译:本文展示了一种针对SNOW-V加密算法的基于功耗分析的侧信道分析攻击,该算法是5G移动通信安全标准的候选方案。攻击在STM32微控制器上实现,通过ChipWhisperer板卡捕获功耗轨迹并进行分析,测试向量泄漏评估证实了可利用的泄漏存在。采用线性判别分析和全连接神经网络进行的模板攻击实现了高效的密钥恢复,其中全连接神经网络所需的最小泄露轨迹数比当前最先进的结合线性判别分析的相关系数功耗分析降低了五倍以上。研究结果凸显了SNOW-V对基于机器学习的侧信道攻击的脆弱性,以及实施有效防护措施的必要性。

0
下载
关闭预览

相关内容

【AAAI2022】基于属性的渐进融合网络的RGBT跟踪
专知会员服务
22+阅读 · 2022年1月8日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员