Insider threat detection (ITD) is challenging due to the subtle and concealed nature of malicious activities performed by trusted users. This paper proposes a post-hoc ITD framework that integrates explicit and implicit graph representations with temporal modelling to capture complex user behaviour patterns. An explicit graph is constructed using predefined organisational rules to model direct relationships among user activities. To mitigate noise and limitations in this hand-crafted structure, an implicit graph is learned from feature similarities using the Gumbel-Softmax trick, enabling the discovery of latent behavioural relationships. Separate Graph Convolutional Networks (GCNs) process the explicit and implicit graphs to generate node embeddings, which are concatenated and refined through an attention mechanism to emphasise threat-relevant features. The refined representations are then passed to a bidirectional Long Short-Term Memory (Bi-LSTM) network to capture temporal dependencies in user behaviour. Activities are flagged as anomalous when their probability scores fall below a predefined threshold. Extensive experiments on CERT r5.2 and r6.2 datasets demonstrate that the proposed framework outperforms state-of-the-art methods. On r5.2, the model achieves an AUC of 98.62, a detection rate of 100%, and a false positive rate of 0.05. On the more challenging r6.2 dataset, it attains an AUC of 88.48, a detection rate of 80.15%, and a false positive rate of 0.15, highlighting the effectiveness of combining graph-based and temporal representations for robust ITD.


翻译:内部威胁检测(ITD)因可信用户执行的恶意活动具有隐蔽性与掩饰性而极具挑战性。本文提出一种事后ITD框架,该框架将显式与隐式图表示与时序建模相结合,以捕捉复杂的用户行为模式。显式图基于预定义的组织规则构建,用于建模用户活动间的直接关联关系。为减轻人工构建结构中存在的噪声与局限性,通过Gumbel-Softmax技巧从特征相似性中学习隐式图,从而发现潜在的行为关联。采用独立的图卷积网络(GCNs)分别处理显式图与隐式图以生成节点嵌入,这些嵌入通过注意力机制进行拼接与精炼,以突出威胁相关特征。精炼后的表征随后输入双向长短期记忆网络(Bi-LSTM)以捕捉用户行为中的时序依赖关系。当活动概率得分低于预设阈值时,即被标记为异常。在CERT r5.2与r6.2数据集上的大量实验表明,所提框架性能优于现有先进方法。在r5.2数据集上,模型取得了98.62的AUC值、100%的检测率与0.05的误报率。在更具挑战性的r6.2数据集上,模型取得了88.48的AUC值、80.15%的检测率与0.15的误报率,这凸显了结合图表示与时序表征对于实现鲁棒内部威胁检测的有效性。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
【AAAI2022】基于属性的渐进融合网络的RGBT跟踪
专知会员服务
22+阅读 · 2022年1月8日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员