This work develops optimal preconditioners for the discrete H(curl) and H(div) problems on two and three-dimensional hypersurfaces by nodal auxiliary space preconditioning [R. Hiptmair, J. Xu: SIAM J. Numer. Anal. 45, 2483-2509 (2007)]. In particular, on unstructured triangulated surfaces, we develop fast and user-friendly preconditioners for the edge and face element discretizations of curl-curl and grad-div problems based on inverting several discrete surface Laplacians. The proposed preconditioners lead to efficient iterative methods for computing harmonic tangential vector fields on discrete surfaces. Numerical experiments on hypersurfaces are presented to test the performance of those surface preconditioners.
翻译:这项工作为通过节点辅助空间先决条件[R. Hiptmair, J. Xu: SIAM J. Numer. Anal. 45, 2483-2509 (2007)]的两维和三维超表层的离散H(curl)和H(div)问题制定了最佳先决条件,特别是在无结构的三角表面,我们开发了快速和方便用户的预设条件,以在倒转若干离点表面的拉普拉奇人为基础,解决卷曲和分层问题的边缘和面部分解问题。拟议的先决条件导致在离点表面计算相向传体的高效迭接方法。