We establish rapid mixing of the random-cluster Glauber dynamics on random $\Delta$-regular graphs for all $q\ge 1$ and $p<p_u(q,\Delta)$, where the threshold $p_u(q,\Delta)$ corresponds to a uniqueness/non-uniqueness phase transition for the random-cluster model on the (infinite) $\Delta$-regular tree. It is expected that this threshold is sharp, and for $q>2$ the Glauber dynamics on random $\Delta$-regular graphs undergoes an exponential slowdown at $p_u(q,\Delta)$. More precisely, we show that for every $q\ge 1$, $\Delta\ge 3$, and $p<p_u(q,\Delta)$, with probability $1-o(1)$ over the choice of a random $\Delta$-regular graph on $n$ vertices, the Glauber dynamics for the random-cluster model has $\Theta(n \log n)$ mixing time. As a corollary, we deduce fast mixing of the Swendsen--Wang dynamics for the Potts model on random $\Delta$-regular graphs for every $q\ge 2$, in the tree uniqueness region. Our proof relies on a sharp bound on the "shattering time", i.e., the number of steps required to break up any configuration into $O(\log n)$ sized clusters. This is established by analyzing a delicate and novel iterative scheme to simultaneously reveal the underlying random graph with clusters of the Glauber dynamics configuration on it, at a given time.
翻译:我们用随机的 $\ Delta$- 常规图形, 随机的 $\ Delta$ 和 $p < p_ u( q,\ Delta)$ 来快速混合 Glauber 随机集群动态。 我们预计这个阈值是锐利的, 随机的 $\ Delta$ - 常规图形的Glauber 动态 $\ Delta$\ George 1 美元 和 $ p_ u( q,\ Delta) 美元 的 $ p< p_ u( q,\ delta) 美元。 更准确地说, 我们显示, 每1 美元 美元 美元, $\ delta\ 美元, 随机分组模式的 rightta$2, 以 rightleglegleglegleglegal$ 的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径。