Individuals signal aspects of their identity and beliefs through linguistic choices. Studying these choices in aggregate allows us to examine large-scale attitude shifts within a population. Here, we develop computational methods to study word choice within a sociolinguistic lexical variable -- alternate words used to express the same concept -- in order to test for change in the United States towards sexuality and gender. We examine two variables: i) referents to significant others, such as the word "partner" and ii) referents to an indefinite person, both of which could optionally be marked with gender. The linguistic choices in each variable allow us to study increased rates of acceptances of gay marriage and gender equality, respectively. In longitudinal analyses across Twitter and Reddit over 87M messages, we demonstrate that attitudes are changing but that these changes are driven by specific demographics within the United States. Further, in a quasi-causal analysis, we show that passages of Marriage Equality Acts in different states are drivers of linguistic change.
翻译:个人通过语言选择表达其身份和信仰的方方面面。研究这些选择的总体情况,使我们可以研究人口中大规模的态度转变。在这里,我们开发了计算方法,在社会语言词汇变量中研究文字选择 -- -- 用于表达相同概念的替代词 -- -- 以测试美国在性与性别方面的变化。我们研究了两个变量:(一) 指其他重要变量,如“伴侣”一词和(二) 指一个无限期的人,两者都可以选用性别标记。每个变量的语言选择允许我们分别研究同性恋婚姻和性别平等的接受率。在Twitter和Redddit对87M讯息的纵向分析中,我们证明态度正在发生变化,但这些变化是由美国特定人口结构驱动的。此外,在半因果分析中,我们显示不同州婚姻平等法的通过是语言变化的驱动因素。