Programming robots for general purpose applications is extremely challenging due to the great diversity of end-user tasks ranging from manufacturing environments to personal homes. Recent work has focused on enabling end-users to program robots using Programming by Demonstration. However, teaching robots new actions from scratch that can be reused for unseen tasks remains a difficult challenge and is generally left up to robotic experts. We propose iRoPro, an interactive Robot Programming framework that allows end-users to teach robots new actions from scratch and reuse them with a task planner. In this work we provide a system implementation on a two-armed Baxter robot that (i) allows simultaneous teaching of low- and high-level actions by demonstration, (ii) includes a user interface for action creation with condition inference and modification, and (iii) allows creating and solving previously unseen problems using a task planner for the robot to execute in real-time. We evaluate the generalisation power of the system on six benchmark tasks and show how taught actions can be easily reused for complex tasks. We further demonstrate its usability with a user study (N=21), where users completed eight tasks to teach the robot new actions that are reused with a task planner. The study demonstrates that users with any programming level and educational background can easily learn and use the system.
翻译:由于终端用户的任务多种多样,从制造环境到个人家庭,一般用途应用程序的编程机器人极具挑战性,因为从制造环境到个人家庭,终端用户的任务多种多样。最近的工作重点是使终端用户能够利用演示程序对机器人进行编程。然而,教机器人从零开始可以重新用于无形任务的新行动,仍是一项艰巨的挑战,通常由机器人专家负责。我们提议了一个互动式机器人编程框架iRoPro,使终端用户能够从零开始教机器人新的行动,并用任务规划员来重新使用它们。在这项工作中,我们为两件装备的巴克斯特机器人提供了系统实施系统,该机器人(一) 允许通过演示同时教授低和高层次的行动,(二) 包括一个使用条件推导和修改的创建行动用户界面,以及(三) 利用机器人实时执行的任务规划员来创造和解决先前无法预见的问题。我们评价了系统在六项基准任务上的普及能力,并展示了如何很容易地将教学行动再用于复杂的任务。我们进一步展示了用户研究的实用性(N=21),用户完成了八项任务,在其中完成了教授机器人新行动的任务,并学习了任何背景的用户如何学习。