Although many techniques have been applied to matrix factorization (MF), they may not fully exploit the feature structure. In this paper, we incorporate the grouping effect into MF and propose a novel method called Robust Matrix Factorization with Grouping effect (GRMF). The grouping effect is a generalization of the sparsity effect, which conducts denoising by clustering similar values around multiple centers instead of just around 0. Compared with existing algorithms, the proposed GRMF can automatically learn the grouping structure and sparsity in MF without prior knowledge, by introducing a naturally adjustable non-convex regularization to achieve simultaneous sparsity and grouping effect. Specifically, GRMF uses an efficient alternating minimization framework to perform MF, in which the original non-convex problem is first converted into a convex problem through Difference-of-Convex (DC) programming, and then solved by Alternating Direction Method of Multipliers (ADMM). In addition, GRMF can be easily extended to the Non-negative Matrix Factorization (NMF) settings. Extensive experiments have been conducted using real-world data sets with outliers and contaminated noise, where the experimental results show that GRMF has promoted performance and robustness, compared to five benchmark algorithms.
翻译:虽然许多技术已经应用于矩阵要素化,但它们可能没有充分利用特征结构。在本文件中,我们将组合效应纳入组合效应,并提出一种叫“强力矩阵与组合效应”的新颖方法。组合效应是广度效应的概括化,通过将类似值集中在多个中心周围而不是仅仅在0个左右来进行分解。与现有的算法相比,拟议的全球放大系数可以不经事先了解就自动学习组合结构和放大作用,方法是引入自然可调整的不可调非凝聚的正规化,以实现同时的宽度和组合效应。具体地说,全球放大系数采用高效交替最小化框架来进行放大放大效应,其中最初的非凝聚问题首先通过Convex(DC)编程将分解成一个共性问题,然后通过变换多动式方向法来解决。此外,通过引入非互换式矩阵化(NMFM)方法,可以很容易地将全球放大系数(NMMF)扩展至非负式矩阵(NMMF)环境。已经利用一个高效的交替最小化框架来进行广泛的实验,在现实-世界级模型中展示了精确的磁度与五级模型,从而显示了业绩的磁度比的磁度。