The isocitrate dehydrogenase (IDH) gene mutation status is an important biomarker for glioma patients. The gold standard of IDH mutation detection requires tumour tissue obtained via invasive approaches and is usually expensive. Recent advancement in radiogenomics provides a non-invasive approach for predicting IDH mutation based on MRI. Meanwhile, tumor geometrics encompass crucial information for tumour phenotyping. Here we propose a collaborative learning framework that learns both tumor images and tumor geometrics using convolutional neural networks (CNN) and graph neural networks (GNN), respectively. Our results show that the proposed model outperforms the baseline model of 3D-DenseNet121. Further, the collaborative learning model achieves better performance than either the CNN or the GNN alone. The model interpretation shows that the CNN and GNN could identify common and unique regions of interest for IDH mutation prediction. In conclusion, collaborating image and geometric learners provides a novel approach for predicting genotype and characterising glioma.
翻译:基因突变状态是显微镜患者的一个重要生物标志。遗传基因突变标准要求通过侵入性方法获得肿瘤组织,而且通常成本很高。最近放射性基因学的进步为预测显微镜突变提供了一种非侵入性的方法。同时,肿瘤几何学包含肿瘤外科的关键信息。我们在此提议一个合作学习框架,分别利用进化神经网络(CNN)和图形神经网络(GNN)学习肿瘤图像和肿瘤几何学。我们的结果表明,拟议的模型超越了3D-DenseNet的基线模型。此外,合作学习模式比CNN或GNN都取得更好的业绩。模型解释表明CNN和GNN可以确定对显微镜预测具有共同和独特兴趣的区域。最后,协作图像和几何学习者提供了一种新颖的方法来预测基因类型和确定浮标的特征。