This work is focused on finding G-optimal designs theoretically for kriging models with two-dimensional inputs and separable exponential covariance structures. For design comparison, the notion of evenness of two-dimensional grid designs is developed. The mathematical relationship between the design and the supremum of the mean squared prediction error (SMSPE) function is studied and then optimal designs are explored for both prospective and retrospective design scenarios. In the case of prospective designs, the new design is developed before the experiment is conducted and the regularly spaced grid is shown to be the G-optimal design. The retrospective designs are constructed by adding or deleting points from an already existing design. Deterministic algorithms are developed to find the best possible retrospective designs (which minimizes the SMSPE). It is found that a more evenly spread design leads to the best possible retrospective design. For all the cases of finding the optimal prospective designs and the best possible retrospective designs, both frequentist and Bayesian frameworks have been considered. The proposed methodology for finding retrospective designs is illustrated for a methane flux monitoring design.


翻译:这项工作的重点是为具有二维投入和可分离的指数共变结构的克里格模型寻找理论上的G-最佳设计; 为设计比较,开发了二维电网设计平衡的概念; 研究了平均平方预测错误(SMSPE)功能的设计与超模之间的数学关系,然后为预期和追溯性设计设想方案探索了最佳设计; 就未来设计而言,新设计是在进行实验之前开发的,定期的空格显示为G-最佳设计; 追溯设计是通过从现有设计中添加或删除点来构建的; 开发了确定性算法,以找到最佳可能的追溯性设计(最大限度地减少SMSPE); 发现更均衡地扩展设计可以带来最佳的追溯性设计; 对于寻找最佳未来设计和可能的最佳追溯性设计的所有案例,都考虑了经常使用和贝耶斯框架。 为甲烷通量监测设计提出了追溯性设计方法。

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
专知会员服务
51+阅读 · 2021年8月8日
专知会员服务
29+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
0+阅读 · 2022年1月12日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年8月8日
专知会员服务
29+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员