Supervised segmentation algorithms yield state-of-the-art results for automated anomaly detection. However, these models require voxel-wise labels which are time-consuming to draw for medical experts. An interesting alternative to voxel-wise annotations is the use of weak labels: these can be coarse or oversized annotations that are less precise, but considerably faster to create. In this work, we address the task of brain aneurysm detection by developing a fully automated, deep neural network that is trained utilizing oversized weak labels. Furthermore, since aneurysms mainly occur in specific anatomical locations, we build our model leveraging the underlying anatomy of the brain vasculature both during training and inference. We apply our model to 250 subjects (120 patients, 130 controls) who underwent Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) and presented a total of 154 aneurysms. To assess the robustness of the algorithm, we participated in a MICCAI challenge for TOF-MRA data (93 patients, 20 controls, 125 aneurysms) which allowed us to obtain results also for subjects coming from a different institution. Our network achieves an average sensitivity of 77% on our in-house data, with a mean False Positive (FP) rate of 0.72 per patient. Instead, on the challenge data, we attain a sensitivity of 59% with a mean FP rate of 1.18, ranking in 7th/14 position for detection and in 4th/11 for segmentation on the open leaderboard. When computing detection performances with respect to aneurysms' risk of rupture, we found no statistical difference between two risk groups (p = 0.12), although the sensitivity for dangerous aneurysms was higher (78%). Our approach suggests that clinically useful sensitivity can be achieved using weak labels and exploiting prior anatomical knowledge; this expands the feasibility of deep learning studies to hospitals that have limited time and data.
翻译:高级分解算法生成了自动异常度检测的最先进结果 。 然而, 这些模型需要使用耗时时间用于医学专家的Voxel 标签。 与 voxel 注释的有趣替代方法是使用薄弱标签: 这些说明可能是粗糙的或过大, 不太精确, 但创造速度要快得多 。 在这项工作中, 我们通过开发一个完全自动化的、 深神经网络来应对脑动脉检测任务, 该网络使用超大的敏感度标签来进行培训。 此外, 由于动脉瘤主要发生在特定的解剖地点, 我们建立模型, 在培训和推断过程中利用大脑血管血管血管构造结构的解剖学基础。 我们的模型可以应用到250个科目( 120个病人, 130个控制器), 而这些科目( TOF- MRA) 的光光度 动脉动动动动动脉冲( TOFA), 并且提供了总共 154个有实用的电动脉动。 为了评估算法的坚硬度, 我们参与了IMAI 对TO- MRA 数据的位置的挑战( 93个病人, 20个控制, 我们的网络的测算中, 将一个平均的运行的运行的机能测试结果, 一种不同的结果, 我们的运行的运行的运行的运行的运行的运行的运行的运行的运行的性反应, 一个正常的运行的运行的运行的运行的运行的运行能, 一个数据, 向, 向, 向的频率的频率的频率的频率的运行情向, 一个在1个测试中, 向, 。