Joint communication and sensing (JCS) has become a promising technology for mobile networks because of its higher spectrum and energy efficiency. Up to now, the prevalent fast Fourier transform (FFT)-based sensing method for mobile JCS networks is on-grid based, and the grid interval determines the resolution. Because the mobile network usually has limited consecutive OFDM symbols in a downlink (DL) time slot, the sensing accuracy is restricted by the limited resolution, especially for velocity estimation. In this paper, we propose a multiple signal classification (MUSIC)-based JCS system that can achieve higher sensing accuracy for the angle of arrival, range, and velocity estimation, compared with the traditional FFT-based JCS method. We further propose a JCS channel state information (CSI) enhancement method by leveraging the JCS sensing results. Finally, we derive a theoretical lower bound for sensing mean square error (MSE) by using perturbation analysis. Simulation results show that in terms of the sensing MSE performance, the proposed MUSIC-based JCS outperforms the FFT-based one by more than 20 dB. Moreover, the bit error rate (BER) of communication demodulation using the proposed JCS CSI enhancement method is significantly reduced compared with communication using the originally estimated CSI.


翻译:联合通信和遥感(JCS)由于其频谱和能源效率较高,已成为移动网络的一个很有希望的技术。到目前为止,移动JCS网络普遍采用的快速Fourier变换法(FFT)基于FFFT的快速测算方法以网络为基础,而网格间隔决定了分辨率。由于移动网络通常在下行(DL)时段限制DM的连续代号,因此遥感准确性受到有限分辨率的限制,特别是速度估计。在本文中,我们提议以多信号分类(MUSIC)为基础的JCS系统,与传统的基于FFT的JCS方法相比,在到达、范围和速度估计角度上能够实现更高的感测精度。我们进一步提议采用JCSS的测结果,JCSA频道加强信息方法。最后,我们通过透视分析,从理论角度上下限测测中测出平均平方差(MSE)的界限。模拟结果显示,在遥感MSE性能方面,拟议的以MSIS为基础的JCSSSAS系统比以FFF1为基础,比20 dB。此外,使用拟议的CSIS的改进了初步的通信的改进率(BSIS)比比低的CSIS。

0
下载
关闭预览

相关内容

JCS:Journal of Computer Security。 Explanation:《计算机安全》杂志介绍了在安全计算机系统和网络的理论、设计、实现、分析和应用方面具有深远意义的研究和开发成果。它还将提供一个论坛,讨论安全和隐私的含义和影响,特别是对技术界有重要影响的含义和影响。该杂志提供了一个机会,发表更深入和长度的文章比在各种现有会议的过程中可能的,同时解决了计算机安全研究人员的观众谁可以假设有一个比其他档案出版物的读者更专业的背景。 Publisher:IOS Press。 SIT: http://dblp.uni-trier.de/db/journals/jcs/
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Data Augmentation for Text Classification
Arxiv
12+阅读 · 2019年3月14日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员