Joint communication and sensing (JCS) has become a promising technology for mobile networks because of its higher spectrum and energy efficiency. Up to now, the prevalent fast Fourier transform (FFT)-based sensing method for mobile JCS networks is on-grid based, and the grid interval determines the resolution. Because the mobile network usually has limited consecutive OFDM symbols in a downlink (DL) time slot, the sensing accuracy is restricted by the limited resolution, especially for velocity estimation. In this paper, we propose a multiple signal classification (MUSIC)-based JCS system that can achieve higher sensing accuracy for the angle of arrival, range, and velocity estimation, compared with the traditional FFT-based JCS method. We further propose a JCS channel state information (CSI) enhancement method by leveraging the JCS sensing results. Finally, we derive a theoretical lower bound for sensing mean square error (MSE) by using perturbation analysis. Simulation results show that in terms of the sensing MSE performance, the proposed MUSIC-based JCS outperforms the FFT-based one by more than 20 dB. Moreover, the bit error rate (BER) of communication demodulation using the proposed JCS CSI enhancement method is significantly reduced compared with communication using the originally estimated CSI.
翻译:联合通信和遥感(JCS)由于其频谱和能源效率较高,已成为移动网络的一个很有希望的技术。到目前为止,移动JCS网络普遍采用的快速Fourier变换法(FFT)基于FFFT的快速测算方法以网络为基础,而网格间隔决定了分辨率。由于移动网络通常在下行(DL)时段限制DM的连续代号,因此遥感准确性受到有限分辨率的限制,特别是速度估计。在本文中,我们提议以多信号分类(MUSIC)为基础的JCS系统,与传统的基于FFT的JCS方法相比,在到达、范围和速度估计角度上能够实现更高的感测精度。我们进一步提议采用JCSS的测结果,JCSA频道加强信息方法。最后,我们通过透视分析,从理论角度上下限测测中测出平均平方差(MSE)的界限。模拟结果显示,在遥感MSE性能方面,拟议的以MSIS为基础的JCSSSAS系统比以FFF1为基础,比20 dB。此外,使用拟议的CSIS的改进了初步的通信的改进率(BSIS)比比低的CSIS。