Herein we explore a dual tree algorithm for matrix multiplication of $A\in \mathbb{R}^{M\times D}$ and $B\in\mathbb{R}^{D\times N}$, very narrowly effective if the normalized rows of $A$ and columns of $B$, treated as vectors in $\mathbb{R}^{D}$, fall into clusters of order proportionate to $\Omega(D^{\tau})$ with radii less than $\arcsin(\epsilon/\sqrt{2})$ on the surface of the unit $D$-ball. The algorithm leverages a pruning rule necessary to guarantee $\epsilon$ precision proportionate to vector magnitude products in the resultant matrix. \textit{ Unfortunately, if the rows and columns are uniformly distributed on the surface of the unit $D$-ball, then the expected points per required cluster approaches zero exponentially fast in $D$; thus, the approach requires a great deal of work to pass muster.}


翻译:在这里,我们探索一个双树算法,用于在单位表面的 $A\ in\ mathb{R\\\M\timeD}D$和$B\in\mathb{R\D\timenN}$B\\\mathb{R\D\time$的矩阵乘法,如果以$mathb{R\D}$作为矢量处理的归一行和列为$B$B$,作为矢量的矢量的矢量,被划成与单位表面的 $Omega(D$D>Tau} 成正比的一组,而光度小于$\arcsin(\epsilon/\\sqrt{2}$($D$D$) 和$B$B$的基质值,则该双树算法将非常狭隘有效。因此,该算法将运用一条必要的修剪规则来保证在结果矩阵中保证 $\ epersillon ex un 精确度与矢量产品成比例的矢量值产品。\ textititititititle{如果行和柱在单位表面上统一分布在单位表面分配 $D$$D$- balls,那么,那么,那么,那么,那么,那么, 需要每组的预期的点点点点每组接近零xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

注意力图神经网络的小样本学习
专知会员服务
192+阅读 · 2020年7月16日
专知会员服务
140+阅读 · 2020年5月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月12日
Arxiv
0+阅读 · 2021年2月10日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员