Current technologies in quantum-based communications bring a new integration of quantum data with classical data for hybrid processing. However, the frameworks of these technologies are restricted to a single classical or quantum task, which limits their flexibility in near-term applications. We propose a quantum reservoir processor to harness quantum dynamics in computational tasks requiring both classical and quantum inputs. This analog processor comprises a network of quantum dots in which quantum data is incident to the network and classical data is encoded via a coherent field exciting the network. We perform a multitasking application of quantum tomography and nonlinear equalization of classical channels. Interestingly, the tomography can be performed in a closed-loop manner via the feedback control of classical data. Therefore, if the classical input comes from a dynamical system, embedding this system in a closed loop enables hybrid processing even if access to the external classical input is interrupted. Finally, we demonstrate preparing quantum depolarizing channels as a novel quantum machine learning technique for quantum data processing.
翻译:量子通信中的当前技术为混合处理带来了量子数据与古典数据的新整合。然而,这些技术的框架仅限于单一的古典或量子任务,这限制了它们在近期应用中的灵活性。 我们提议了一个量子储量处理器,以便在需要古典和量子投入的计算任务中利用量子动态。 这个模拟处理器由量子点组成的网络组成,其中量子数据与网络发生事故,而古典数据则通过一个连贯的字段对网络进行编码。我们执行量子透镜和非线性平衡古典频道的多任务应用。有趣的是,通过对古典数据的反馈控制,可以以闭路方式进行量子扫描。因此,如果古典输入来自动态系统,将这一系统嵌入一个封闭循环,即使外部的古典输入中断,也能够进行混合处理。 最后,我们证明正在准备量子脱极化渠道,作为量子机器处理量子数据的新学习技术。