Finite mixture models have long been used across a variety of fields in engineering and sciences. Recently there has been a great deal of interest in quantifying the convergence behavior of the mixing measure, a fundamental object that encapsulates all unknown parameters in a mixture distribution. In this paper we propose a general framework for estimating the mixing measure arising in finite mixture models, which we term minimum $\Phi$-distance estimators. We establish a general theory for the minimum $\Phi$-distance estimator, where sharp probability bounds are obtained on the estimation error for the mixing measures in terms of the suprema of the associated empirical processes for a suitably chosen function class $\Phi$. Our framework includes several existing and seemingly distinct estimation methods as special cases but also motivates new estimators. For instance, it extends the minimum Kolmogorov-Smirnov distance estimator to the multivariate setting, and it extends the method of moments to cover a broader family of probability kernels beyond the Gaussian. Moreover, it also includes methods that are applicable to complex (e.g., non-Euclidean) observation domains, using tools from reproducing kernel Hilbert spaces. It will be shown that under general conditions the methods achieve optimal rates of estimation under Wasserstein metrics in either minimax or pointwise sense of convergence; the latter case can be achieved when no upper bound on the finite number of components is given.
翻译:有限混合模型长期以来一直被用于工程和科学的各个领域。最近,在混合测度的收敛行为方面引起了极大的兴趣,该基本对象包含混合分布中的所有未知参数。在本文中,我们提出了一个通用框架,用于估计出现在有限混合模型中的混合测度,称为最小化$Φ$-距离估计器。我们建立了最小化$Φ$-距离估计器的普适理论,其中对于适当选择的函数类$ Φ$关联的经验过程的最大值获得了有关混合测度估计误差的尖锐概率界限。我们的框架包括几种现有和看似不同的估计方法,但也激发了新的估计器。例如,它将最小Kolmogorov-Smirnov距离估计器扩展到多元设置,并扩展了矩方法以涵盖更广泛的概率核族,超越了高斯核族。此外,还包括适用于复杂(例如,非欧几里德)观察域的方法,使用再生核希尔伯特空间的工具。将证明,在一般条件下,这些方法在Wasserstein距离的最小化或渐进意义下实现了最优的估计速率;当没有给定有限数量的组件上限时,可以实现后者。