Language models (LMs) are sentence-completion engines trained on massive corpora. LMs have emerged as a significant breakthrough in natural-language processing, providing capabilities that go far beyond sentence completion including question answering, summarization, and natural-language inference. While many of these capabilities have potential application to cognitive systems, exploiting language models as a source of task knowledge, especially for task learning, offers significant, near-term benefits. We introduce language models and the various tasks to which they have been applied and then review methods of knowledge extraction from language models. The resulting analysis outlines both the challenges and opportunities for using language models as a new knowledge source for cognitive systems. It also identifies possible ways to improve knowledge extraction from language models using the capabilities provided by cognitive systems. Central to success will be the ability of a cognitive agent to itself learn an abstract model of the knowledge implicit in the LM as well as methods to extract high-quality knowledge effectively and efficiently. To illustrate, we introduce a hypothetical robot agent and describe how language models could extend its task knowledge and improve its performance and the kinds of knowledge and methods the agent can use to exploit the knowledge within a language model.


翻译:语言模型(LMS)是受过大规模集体教学培训的完成判决的引擎。LMS已成为自然语言处理方面的一个重大突破,提供了远远超出完成刑期范围的能力,包括回答问题、总结和自然语言推断。虽然其中许多能力都有可能应用于认知系统,但利用语言模型作为任务知识的来源,特别是用于任务学习,可以带来重大、近期的好处。我们引入语言模型及其应用的各种任务,然后审查从语言模型中提取知识的方法。由此产生的分析概述了使用语言模型作为认知系统新知识来源的挑战和机遇。它还确定了利用认知系统提供的能力改进从语言模型中提取知识的可能方法。成功的核心将是认知代理人自己学习LM系统所隐含知识的抽象模型的能力,以及有效和高效地获取高质量知识的方法。我们引入一个假设机器人代理,并描述语言模型如何扩展其任务知识,改进其业绩,以及该代理人在语言模型内利用知识的种类和方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年9月25日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
6+阅读 · 2019年9月4日
VIP会员
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员