A conventional approach to entity linking is to first find mentions in a given document and then infer their underlying entities in the knowledge base. A well-known limitation of this approach is that it requires finding mentions without knowing their entities, which is unnatural and difficult. We present a new model that does not suffer from this limitation called EntQA, which stands for Entity linking as Question Answering. EntQA first proposes candidate entities with a fast retrieval module, and then scrutinizes the document to find mentions of each candidate with a powerful reader module. Our approach combines progress in entity linking with that in open-domain question answering and capitalizes on pretrained models for dense entity retrieval and reading comprehension. Unlike in previous works, we do not rely on a mention-candidates dictionary or large-scale weak supervision. EntQA achieves strong results on the GERBIL benchmarking platform.


翻译:将实体连接起来的传统做法是首先在特定文件中找到提及,然后在知识库中推断出其基本实体。这一方法的一个众所周知的限制是,在不了解其实体的情况下需要找到提及,这是非自然的,也是困难的。我们提出了一个不受这种限制影响的新模式,即EntQA,它代表着将实体连接起来作为问题回答。EntQA首先提出具有快速检索模块的候选实体,然后对文件进行仔细审查,以找到每个候选人的提及,并使用一个强大的阅读模块。我们的方法将实体与开放式问题的回答和利用经过预先训练的密集实体检索和阅读理解模型相结合。与以前的工作不同,我们不依赖推荐的字典或大规模薄弱的监督。EntQA在GERBIL基准平台上取得了强有力的成果。

0
下载
关闭预览

相关内容

【AAAI2021】维基百科检索跳转来回答复杂的问题
专知会员服务
14+阅读 · 2021年1月5日
知识驱动的视觉知识学习,以VQA视觉问答为例,31页ppt
专知会员服务
35+阅读 · 2020年9月25日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
论文浅尝 | EARL: Joint Entity and Relation Linking for QA over KG
开放知识图谱
6+阅读 · 2018年10月30日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
论文浅尝 | CFO: Conditional Focused Neural Question Answering
开放知识图谱
6+阅读 · 2017年12月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
3+阅读 · 2018年11月29日
VIP会员
相关资讯
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
论文浅尝 | EARL: Joint Entity and Relation Linking for QA over KG
开放知识图谱
6+阅读 · 2018年10月30日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
论文浅尝 | CFO: Conditional Focused Neural Question Answering
开放知识图谱
6+阅读 · 2017年12月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员