Historically, to bound the mean for small sample sizes, practitioners have had to choose between using methods with unrealistic assumptions about the unknown distribution (e.g., Gaussianity) and methods like Hoeffding's inequality that use weaker assumptions but produce much looser (wider) intervals. In 1969, Anderson (1969) proposed a mean confidence interval strictly better than or equal to Hoeffding's whose only assumption is that the distribution's support is contained in an interval $[a,b]$. For the first time since then, we present a new family of bounds that compares favorably to Anderson's. We prove that each bound in the family has {\em guaranteed coverage}, i.e., it holds with probability at least $1-\alpha$ for all distributions on an interval $[a,b]$. Furthermore, one of the bounds is tighter than or equal to Anderson's for all samples. In simulations, we show that for many distributions, the gain over Anderson's bound is substantial.
翻译:在历史上,为了约束小样本大小的平均值,从业者不得不在使用对未知分布(例如高森)不切实际的假设的方法和Hoffding的不平等方法之间作出选择,前者使用较弱的假设,而后者则产生更松(大)的间隔。1969年,Anderson(1969年)提出一个平均信任间隔,严格地说优于或等于Hoffding的假设,后者的唯一假设是分配支持包含在$[a,b]$的间隔内。自那以后,我们首次提出了一个新的界限组,其范围比Anderson的要好。我们证明家庭中的每一个界限都有保证覆盖值,也就是说,对于一个间隔 $[a,b]$的所有分布,其概率至少为1\阿尔法$。此外,其中一个界限比Anderson的所有样品的长度都紧或等于Anderson。在模拟中显示,对于许多分布而言,Anderson的收益是巨大的。