With the development of Edge Computing and Artificial Intelligence (AI) technologies, edge devices are witnessed to generate data at unprecedented volume. The Edge Intelligence (EI) has led to the emergence of edge devices in various application domains. The EI can provide efficient services to delay-sensitive applications, where the edge devices are deployed as edge nodes to host the majority of execution, which can effectively manage services and improve service discovery efficiency. The multilevel index model is a well-known model used for indexing service, such a model is being introduced and optimized in the edge environments to efficiently services discovery whilst managing large volumes of data. However, effectively updating the multilevel index model by adding new services timely and precisely in the dynamic Edge Computing environments is still a challenge. Addressing this issue, this paper proposes a designated key selection method to improve the efficiency of adding services in the multilevel index models. Our experimental results show that in the partial index and the full index of multilevel index model, our method reduces the service addition time by around 84% and 76%, respectively when compared with the original key selection method and by around 78% and 66%, respectively when compared with the random selection method. Our proposed method significantly improves the service addition efficiency in the multilevel index model, when compared with existing state-of-the-art key selection methods, without compromising the service retrieval stability to any notable level.
翻译:随着电磁计算和人工智能(AI)技术的开发,边缘装置被见证以前所未有的数量生成数据。边缘情报(EI)导致在各种应用领域出现边缘装置。欧洲情报(EI)可以为延迟敏感应用提供高效服务,将边缘装置作为边缘装置作为边缘节点部署,以容纳大多数执行项目,从而有效地管理服务并提高服务发现效率。多层次指数模型是用于索引服务的一个众所周知的模式,在边缘环境中,这种模型正在引入并优化,以高效服务发现,同时管理大量数据。然而,通过及时准确地在动态边缘电子计算环境中添加新的服务,有效地更新多层次指数模型仍然是一项挑战。针对这一问题,本文件提出了一个指定的关键选择方法,以提高在多层次指数模型中添加服务的效率,从而能够有效管理服务并提高服务发现效率。我们的实验结果表明,在部分指数和多层次指数模型的全部指数模型中,我们的方法将服务增加时间分别减少84%和76 %左右,与最初的关键选择方法相比,在动态边缘电子计算环境中,与任何任意选择服务水平相比,将分别减少78%和66%。我们建议的方法大大改进了现有关键选择服务的效率,与任意选择方法。我们提出的方法,将大大改进了现有的标准,将改进了标准,将改进了任何标准检索率。我们提出的方法,将改进了任何标准,将改进了任何标准,将服务水平,将改进了标准方法,将改进了任何标准。