With the proliferation of the Internet of Things (IoT) and the wide penetration of wireless networks, the surging demand for data communications and computing calls for the emerging edge computing paradigm. By moving the services and functions located in the cloud to the proximity of users, edge computing can provide powerful communication, storage, networking, and communication capacity. The resource scheduling in edge computing, which is the key to the success of edge computing systems, has attracted increasing research interests. In this paper, we survey the state-of-the-art research findings to know the research progress in this field. Specifically, we present the architecture of edge computing, under which different collaborative manners for resource scheduling are discussed. Particularly, we introduce a unified model before summarizing the current works on resource scheduling from three research issues, including computation offloading, resource allocation, and resource provisioning. Based on two modes of operation, i.e., centralized and distributed modes, different techniques for resource scheduling are discussed and compared. Also, we summarize the main performance indicators based on the surveyed literature. To shed light on the significance of resource scheduling in real-world scenarios, we discuss several typical application scenarios involved in the research of resource scheduling in edge computing. Finally, we highlight some open research challenges yet to be addressed and outline several open issues as the future research direction.


翻译:随着物联网(IoT)的扩展和无线网络的广泛渗透,对数据通信和计算的需求急剧增加,这就要求出现一种新兴的边缘计算模式。通过将云层中的服务和功能移到用户的近距离,边缘计算可以提供强大的通信、存储、网络和通信能力。边缘计算中的资源时间安排是边际计算系统成功的关键,因此吸引了越来越多的研究兴趣。在本文件中,我们调查最新研究结果,了解该领域的研究进展。具体地说,我们介绍边际计算结构,根据这一结构讨论资源列表的不同协作方式。特别是,我们采用统一模型,然后从三个研究问题,包括计算卸载、资源分配和提供资源,总结当前资源时间安排的工作。根据两种运作模式,即集中和分散模式,讨论和比较资源列表的不同技术。此外,我们根据所调查的文献,总结主要业绩指标。为了阐明资源列表在某些现实世界情景中的重要性,我们先讨论一些典型的应用设想方案,然后从三个研究议题中总结出资源列表中涉及的公开应用情景。最后,我们讨论一些研究前期研究方向研究的开放选择。

1
下载
关闭预览

相关内容

边缘计算(英语:Edge computing),又译为边缘计算,是一种分散式运算的架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理[1]。边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
面向健康的大数据与人工智能,103页ppt
专知会员服务
108+阅读 · 2020年12月29日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
119+阅读 · 2020年3月30日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Arxiv
8+阅读 · 2020年10月7日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Top
微信扫码咨询专知VIP会员