Uniformity testing, or testing whether independent observations are uniformly distributed, is the prototypical question in distribution testing. Over the past years, a line of work has been focusing on uniformity testing under privacy constraints on the data, and obtained private and data-efficient algorithms under various privacy models such as central differential privacy (DP), local privacy (LDP), pan-privacy, and, very recently, the shuffle model of differential privacy. In this work, we considerably simplify the analysis of the known uniformity testing algorithm in the shuffle model, and, using a recent result on "privacy amplification via shuffling," provide an alternative algorithm attaining the same guarantees with an elementary and streamlined argument.
翻译:统一测试,或者测试独立观测是否统一分布,是分布测试的原型问题。 过去几年来,一行工作一直侧重于在数据隐私限制下的统一测试,并根据各种隐私模式获得私人和数据高效算法,如中央差分隐私(DP )、地方隐私(LDP ) 、 地方隐私(PanPrivacy ) 、 以及最近的不同隐私打乱模式。 在这项工作中,我们大大简化了对已知的洗牌模式统一测试算法的分析,并且利用最近关于“通过洗牌进行隐私扩增”的结果,提供了一种以基本和简化的论据获得相同保障的替代算法。