Transformers are responsible for the vast majority of recent advances in natural language processing. The majority of practical natural language processing applications of these models are typically enabled through transfer learning. This paper studies if corpus-specific tokenization used for fine-tuning improves the resulting performance of the model. Through a series of experiments, we demonstrate that such tokenization combined with the initialization and fine-tuning strategy for the vocabulary tokens speeds up the transfer and boosts the performance of the fine-tuned model. We call this aspect of transfer facilitation vocabulary transfer.
翻译:最近自然语言处理的绝大多数进展是由变异器造成的。这些模型的多数实际自然语言处理应用通常通过转移学习得以实现。如果用于微调的物理符号化提高了模型的性能,本文的研究就是如此。通过一系列实验,我们证明这种象征性化加上词汇符号的初始化和微调战略加快了转换速度,提高了微调模式的性能。我们称之为转移便利词汇转移的这一方面。