Measuring and monitoring soil organic carbon is critical for agricultural productivity and for addressing critical environmental problems. Soil organic carbon not only enriches nutrition in soil, but also has a gamut of co-benefits such as improving water storage and limiting physical erosion. Despite a litany of work in soil organic carbon estimation, current approaches do not generalize well across soil conditions and management practices. We empirically show that explicit modeling of cause-and-effect relationships among the soil processes improves the out-of-distribution generalizability of prediction models. We provide a comparative analysis of soil organic carbon estimation models where the skeleton is estimated using causal discovery methods. Our framework provide an average improvement of 81% in test mean squared error and 52% in test mean absolute error.
翻译:测量和监测土壤有机碳对于农业生产力和解决重大环境问题至关重要。土壤有机碳不仅丰富土壤中的营养,而且具有一系列共同效益,如改善水储存和限制物理侵蚀。尽管在土壤有机碳估算方面做了大量工作,但目前的方法并没有在土壤条件和管理做法中一概而论。我们从经验上表明,对土壤过程之间的因果关系进行明确的建模,可以改善预测模型的分布外通用性。我们比较分析利用因果发现方法估算骨骼的土壤有机碳估算模型。我们的框架提供了平均改进,测试中81%的正方差,52%的测试中52%的测试中表示绝对差。