Generative Adversarial Networks (GANs) have achieved impressive results for many real-world applications. As an active research topic, many GAN variants have emerged with improvements in sample quality and training stability. However, visualization and understanding of GANs is largely missing. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to concepts with a segmentation-based network dissection method. We quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. Finally, we examine the contextual relationship between these units and their surrounding by inserting the discovered concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in the scene. We will open source our interactive tools to help researchers and practitioners better understand their models.


翻译:生成的Adversarial 网络(GANs)在许多现实世界应用中取得了令人印象深刻的成果。作为一个积极的研究课题,许多GAN变量随着样本质量和培训稳定性的改善而出现。然而,GAN的可视化和理解基本上缺乏。GAN如何在内部代表我们的视觉世界?GAN的结果是什么原因?建筑选择如何影响GAN的学习? 回答这些问题可以使我们开发新的洞察力和更好的模型。在这项工作中,我们提出了一个分析框架,以在单位、对象和场景一级可视化和理解GAN。我们首先确定一组可解释的单位,这些单位与以分解为基础的网络分解方法的概念密切相关。我们量化可解释单位的因果关系,通过测量用于控制输出对象的物体的干预能力;最后,我们审视这些单位及其周围的背景关系,将发现的概念插入新的图像。我们展示了我们框架所促成的一些实际应用,从比较不同层次、模型和数据集的内部表现,到改进GANs的可解释性单位,我们通过定位和删除互动工具来理解其互动的模型,从而更好地理解其互动工具来源。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
7+阅读 · 2018年11月6日
Physical Primitive Decomposition
Arxiv
4+阅读 · 2018年9月13日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员