We consider the usage of finite-length polar codes for the Gaussian multiple access channel (GMAC) with a finite number of users. Based on the interleave-division multipleaccess (IDMA) concept, we implement an iterative detection and decoding non-orthogonal multiple access (NOMA) receiver that benefits from a low complexity, while scaling (almost) linearly with the amount of active users. We further show the conceptual simplicity of the belief propagation (BP)-based decoder in a step-by-step illustration of its construction. Beyond its conceptual simplicity, this approach benefits from an improved performance when compared to some recent work tackling the same problem, namely the setup of finite-length forward errorcorrection (FEC) codes for finite-number of users. We consider the 5th generation mobile communication (5G) polar code with a block length $N = 512$ applied to both a two-user and a four-user GMAC scenario with a sum-rate of $R_{sum} = 0.5$ and $R_{sum} = 1$, respectively. Simulation results show that a BP-based soft interference cancellation (SoIC) receiver outperforms a joint successive cancellation (JSC) scheme. Finally, we investigate the effect of a concatenated repetition code which suggests that alternative polar code design rules are required in multi-user scenarios.


翻译:我们考虑对Gausian多重接入频道(GMAC)使用固定长度极地代码,其用户数量有限。根据请假司间多存取(IDMA)概念,我们实施一个迭代检测和解码非横向多存存取(NOMA)接收器,该接收器受益于低复杂性,同时以活跃用户的数量逐步(几乎)扩大(线性地)使用。我们进一步展示了基于信仰传播(BP)的分解码概念的简单性,以逐步展示其构建。除了概念简单性外,这一方法还得益于与最近处理同一问题的一些工作相比的改进性能,即为有限用户设置长远存错误校正(FEC)代码。我们认为第5代移动通信(5G)极代码以区长=512美元为基础,适用于双用户和四用户GMAC情景,其总和值为0.5美元和美元==1美元。模拟结果显示,在连续的用户设计规则中,需要连续的软干涉规则(我们标准)取消。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
5+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月22日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
5+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员