Domain adaptation seeks to mitigate the shift between training on the \emph{source} domain and testing on the \emph{target} domain. Most adaptation methods rely on the source data by joint optimization over source data and target data. Source-free methods replace the source data with a source model by fine-tuning it on target. Either way, the majority of the parameter updates for the model representation and the classifier are derived from the source, and not the target. However, target accuracy is the goal, and so we argue for optimizing as much as possible on the target data. We show significant improvement by on-target adaptation, which learns the representation purely from target data while taking only the source predictions for supervision. In the long-tailed classification setting, we show further improvement by on-target class distribution learning, which learns the (im)balance of classes from target data.
翻译:域适应力求减轻在\ emph{ source} 域培训与 emph{ target} 域测试之间的转移。 多数适应方法都依靠源数据, 共同优化源数据和目标数据。 无源方法以源模型取代源数据, 微调目标数据。 无论是哪种方式, 模型显示和分类器的参数更新大多来自源, 而不是目标。 然而, 目标准确性是目标目标, 因此我们主张尽可能优化目标数据。 我们通过目标适应来显示显著改进。 我们通过目标适应, 目标调整只从目标数据中学习代表, 仅从目标数据中学习源预测用于监督。 在长期的分类设置中, 我们通过目标分类分布学习, 学习( IM) 类与目标数据的平衡, 来显示进一步的改进。