Deep learning (DL) based language models achieve high performance on various benchmarks for Natural Language Inference (NLI). And at this time, symbolic approaches to NLI are receiving less attention. Both approaches (symbolic and DL) have their advantages and weaknesses. However, currently, no method combines them in a system to solve the task of NLI. To merge symbolic and deep learning methods, we propose an inference framework called NeuralLog, which utilizes both a monotonicity-based logical inference engine and a neural network language model for phrase alignment. Our framework models the NLI task as a classic search problem and uses the beam search algorithm to search for optimal inference paths. Experiments show that our joint logic and neural inference system improves accuracy on the NLI task and can achieve state-of-art accuracy on the SICK and MED datasets.
翻译:深入学习( DL) 语言模型在自然语言推断( NLI) 的各种基准上取得了很高的成绩。 而此时,对 NLI 的象征性方法正在受到较少的注意。 两种方法( 符号和 DL) 都有其优点和弱点。 但是, 目前没有一种方法将这两种方法结合到解决 NLI 任务的系统中。 为了合并符号和深层次学习方法, 我们提议了一个称为 NeuralLog 的推论框架, 它既使用单度逻辑推论引擎,又使用神经网络语言模型来调整短语。 我们的框架模型将 NLI 任务作为经典的搜索问题模型, 并且使用光束搜索算法来寻找最佳推论路径。 实验表明, 我们的联合逻辑和神经推论系统提高了 NLI 任务的准确性, 并且能够实现 SICK 和MED 数据集的状态精确性。