Analytical database systems are typically designed to use a column-first data layout to access only the desired fields. On the other hand, storing data row-first works great for accessing, inserting, or updating entire rows. Transforming rows to columns at runtime is expensive, hence, many analytical systems ingest data in row-first form and transform it in the background to columns to facilitate future analytical queries. How will this design change if we can always efficiently access only the desired set of columns? To address this question, we present a radically new approach to data transformation from rows to columns. We build upon recent advancements in embedded platforms with re-programmable logic to design native in-memory access on rows and columns. Our approach, termed Relational Memory, relies on an FPGA- based accelerator that sits between the CPU and main memory and transparently transforms base data to any group of columns with minimal overhead at runtime. This design allows accessing any group of columns as if it already exists in memory. We implement and deploy Relational Memory in real hardware, and we show that we can access the desired columns up to 1.63x faster than accessing them from their row-wise counterpart, while matching the performance of a pure columnar access for low projectivity, and outperforming it by up to 1.87x as projectivity (and tuple re-construction cost) increases. Moreover, our approach can be easily extended to support offloading of a number of operations to hardware, e.g., selection, group by, aggregation, and joins, having the potential to vastly simplify the software logic and accelerate the query execution.


翻译:分析数据库系统通常设计为使用列一的数据布局来只访问想要的字段。 另一方面, 将数据行一的储存为数据行一的功能, 用于访问、 插入或更新整个行。 将行转换成运行时的列是昂贵的, 因此, 许多分析系统以行一的形式记录数据, 并将数据转换成背景以方便今后的分析查询。 如果我们总是能够有效地访问想要的列组, 那么这种设计会如何改变? 为了解决这个问题, 我们提出了将数据从行转换为列的全新方法 。 另一方面, 我们利用嵌入平台中最近的进展, 用可重新编译的逻辑设计全行和列。 我们的方法, 被称为“ 关系内存”, 依靠基于一个基于直列的加速数据采集器, 在 CPU 和主内存中, 透明地将基本数据转换成任何一组在运行时拥有最低管理费的列 。 为了解决这个问题, 我们用真实硬件执行和部署“ 关系内存” 。 我们用电子逻辑来建立和部署最近的进展, 。 我们用预想的轨道 快速的运行到直径直径直径的直径,,, 直径比直径运行的直径的直径, 直径, 直到直到直到直径的直到直径的直径, 。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月7日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员