In this study, we propose a head-to-head type (H2H-type) inter-personal multimodal Dirichlet mixture (Inter-MDM) by modifying the original Inter-MDM, which is a probabilistic generative model that represents the symbol emergence between two agents as multiagent multimodal categorization. A Metropolis--Hastings method-based naming game based on the Inter-MDM enables two agents to collaboratively perform multimodal categorization and share signs with a solid mathematical foundation of convergence. However, the conventional Inter-MDM presumes a tail-to-tail connection across a latent word variable, causing inflexibility of the further extension of Inter-MDM for modeling a more complex symbol emergence. Therefore, we propose herein a head-to-head type (H2H-type) Inter-MDM that treats a latent word variable as a child node of an internal variable of each agent in the same way as many prior studies of multimodal categorization. On the basis of the H2H-type Inter-MDM, we propose a naming game in the same way as the conventional Inter-MDM. The experimental results show that the H2H-type Inter-MDM yields almost the same performance as the conventional Inter-MDM from the viewpoint of multimodal categorization and sign sharing.
翻译:在这项研究中,我们建议采用头对头的多式联运Drichlet混合物(H2H型),修改最初的MDM(MDM),这是一种概率型的基因模型,代表两个代理商作为多剂多式联运分类的出现符号。根据MDM(MDM),基于MDM(MDM),基于MD-HA(H2H型)方法的命名游戏,使两个代理商能够合作进行多式联运分类,并以坚实的数学集成基础分享标志。然而,传统的MDM(MDM)假定一个潜在字变数之间的尾对尾连接,造成MDM(M)之间进一步扩展的不灵活性,以模拟更复杂的符号出现。因此,我们在此建议采用头对头的型(H2H型)MDM(M)跨MM(M)模式,将潜在变数视为每个代理商内部变数的子节点,与许多以前对多式联运分类的研究相同。根据H2H-H-H-MDMM(MM),我们提议以同样的方式命名游戏作为传统的MDMMMMM(M)之间和MMDM(M)模式的模型(M(M)模式)模式)的模型(ML)模式)模型(MDOL(ML)模型)的模型(MDM(M)模型)的模型)模型(ML)的模型)的模型(MDMDM)模型)的模拟)的模拟)的模拟性表现显示。