Estimating Click-Through Rate (CTR) is a vital yet challenging task in personalized product search. However, existing CTR methods still struggle in the product search settings due to the following three challenges including how to more effectively extract users' short-term interests with respect to multiple aspects, how to extract and fuse users' long-term interest with short-term interests, how to address the entangling characteristic of long and short-term interests. To resolve these challenges, in this paper, we propose a new approach named Hierarchical Interests Fusing Network (HIFN), which consists of four basic modules namely Short-term Interests Extractor (SIE), Long-term Interests Extractor (LIE), Interests Fusion Module (IFM) and Interests Disentanglement Module (IDM). Specifically, SIE is proposed to extract user's short-term interests by integrating three fundamental interests encoders within it namely query-dependent, target-dependent and causal-dependent interest encoder, respectively, followed by delivering the resultant representation to the module LIE, where it can effectively capture user long-term interests by devising an attention mechanism with respect to the short-term interests from SIE module. In IFM, the achieved long and short-term interests are further fused in an adaptive manner, followed by concatenating it with original raw context features for the final prediction result. Last but not least, considering the entangling characteristic of long and short-term interests, IDM further devises a self-supervised framework to disentangle long and short-term interests. Extensive offline and online evaluations on a real-world e-commerce platform demonstrate the superiority of HIFN over state-of-the-art methods.
翻译:Hierarchically Fusing Long and Short-Term User Interests for Click-Through Rate Prediction in Product Search(在产品搜索中分层融合长短期用户兴趣进行点击率预估). 评估点击率是个性化产品搜索中必不可少的且具有挑战性的任务。然而,现有的CTR方法在产品搜索环境中仍面临着以下三个挑战:如何更有效地提取用户与多个方面有关的短期兴趣,如何提取并融合用户的长期兴趣和短期兴趣,如何解决长期和短期兴趣的交织特性。 为解决这些挑战,本文提出了一种名为Hierarchical Interests Fusing Network(HIFN)的新方法,它由四个基本模块组成,包括短期兴趣提取器(SIE),长期兴趣提取器(LIE),兴趣融合模块(IFM)和兴趣解纠模块(IDM)。具体而言,SIE旨在通过将三个基本兴趣编码器整合在其中(即依赖查询,依赖目标和因果依赖兴趣编码器)来提取用户的短期兴趣,然后将结果表示传递到LIE模块中,在这里,它可以通过设计关注来自SIE模块的短期兴趣的机制,有效地捕捉用户的长期兴趣。在IFM中,进一步采用自适应方式融合获得的长期和短期兴趣,然后将其与原始的上下文特征连接以获取最终的预测结果。最后但并非最不重要的,考虑到长期和短期兴趣的交织特性,IDM进一步设计了一个自监督框架以解答长期和短期兴趣。在一个真实的电子商务平台上进行的广泛离线和在线评估表明,HIFN优于现有的方法。