Calorimeter simulation is the most computationally expensive part of Monte Carlo generation of samples necessary for analysis of experimental data at the Large Hadron Collider (LHC). The High-Luminosity upgrade of the LHC would require an even larger amount of such samples. We present a technique based on Discrete Variational Autoencoders (DVAEs) to simulate particle showers in Electromagnetic Calorimeters. We discuss how this work paves the way towards exploration of quantum annealing processors as sampling devices for generation of simulated High Energy Physics datasets.
翻译:热量计模拟是蒙特卡洛为分析大型散射相撞器实验数据而生成的样本中计算成本最高的部分。LHC的高液态升级需要更多此类样本。我们介绍了一种基于分辨变异自动电解码器(DVAEs)的技术,用于模拟电磁热量计中的粒子阵列。我们讨论了这项工作如何为探索量子射线处理器作为生成模拟高能物理数据集的取样装置铺平了道路。