We study the behavior of log-supermodular functions under convolution. In particular we show that log-concave product densities preserve log-supermodularity, confirming in the special case of the standard Gaussian density, a conjecture of Zartash and Robeva. Additionally, this stability gives a ``conditional'' entropy power inequality for log-supermodular random variables. We also compare the Ahlswede-Daykin four function theorem and a recent four function version of the Prekopa-Leindler inequality due to Cordero-Erausquin and Maurey and giving transport proofs for the two theorems. In the Prekopa-Leindler case, the proof gives a generalization that seems to be new, which interpolates the classical three and the recent four function versions.
翻译:本文研究对数超模函数在卷积运算下的性质。特别地,我们证明了对数凹乘积密度函数能够保持对数超模性,从而在标准高斯密度函数这一特殊情形下,证实了Zartash与Robeva提出的猜想。此外,该稳定性为对数超模随机变量导出了一个"条件"熵幂不等式。我们进一步比较了Ahlswede-Daykin四函数定理,以及Cordero-Erausquin与Maurey基于传输理论证明的Prékopa-Leindler不等式新近四函数形式。对于Prékopa-Leindler情形,我们的证明给出了一个看似全新的推广形式,该形式在经典三函数版本与新近四函数版本之间建立了插值关系。