This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection problem in image space. Using one-hot-encodings, the resulting grayscale thumbnails provide a quarter-million examples for deep learning algorithms. Applying the MobileNetV2's convolutional neural network architecture, the work demonstrates a 97% accuracy in distinguishing normal and attack traffic. Further class refinements to 9 individual attack families (exploits, worms, shellcodes) show an overall 56% accuracy. Using feature importance rank, a random forest solution on subsets show the most important source-destination factors and the least important ones as mainly obscure protocols. The dataset is available on Kaggle.


翻译:这项研究将UNSW-NB15的网络攻击数据集重新定位为图像空间的入侵探测问题。 由此产生的灰度缩略图使用一热编码,为深层学习算法提供了25万个实例。 应用了移动NetV2的进化神经网络结构, 这项工作在区分正常和攻击交通方面显示了97%的精确度。 对9个攻击家庭( 开发、 蠕虫、 贝壳代码)的进一步分类改进显示了56%的总体精确度。 使用特性重要性等级, 子集的随机森林解决方案显示了最重要的源估计因素, 以及最不重要的( 主要是模糊的) 协议。 该数据集可以在 Kaggle 上查阅 。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
深度学习、机器学习图像/人脸/字幕/自动驾驶数据集(Dataset)汇总
数据挖掘入门与实战
3+阅读 · 2018年1月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
7+阅读 · 2020年3月1日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关资讯
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
深度学习、机器学习图像/人脸/字幕/自动驾驶数据集(Dataset)汇总
数据挖掘入门与实战
3+阅读 · 2018年1月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关论文
Arxiv
7+阅读 · 2020年3月1日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
3+阅读 · 2017年11月20日
Top
微信扫码咨询专知VIP会员